书吧达 > 勤奋的徐三少的新书 > 第89章 白发魔的特权

第89章 白发魔的特权


“我到了!”不知不觉的来到宁轻雪宿舍楼下,徐武的脑袋还是晕乎乎的,两边碰撞产生的柔软触感不断侵食着他的心灵。

  “啊,哦!”徐武应了一声,目光还处于呆滞状态,估计宁轻雪说的啥都没听清,随口回应而已。

  “阿武,我说我到了!”宁轻雪看着他呆呆地样子,又重复了一遍说道。

  “啊,哦,那你上去吧!”徐武反应过来,摸了摸鼻子,有些尴尬的说道。

  “我说我到了呀!”宁轻雪再次说道,希望徐武能明白她的意思。

  “额,那要不我送你到你们宿舍门口,在往里肯定进不去了,阿姨也不让!”徐武点点头,很认真的说道。

  “啊,真是气死我,你这个呆子,闭上眼睛。”宁轻雪有些发狂,大叫一声命令道。

  “闭上眼睛干嘛?”徐武看着她问道。

  “叫你闭,你就闭,那么多废话干嘛?”宁轻雪说道,都快被这个钢铁直男气死了。

  “哦!”徐武不明白,但还是闭上了眼睛,全身放松下来。

  “啵……”徐武感觉脸色一热,睁开眼时,宁轻雪已经转身跑开了,让他呆立在场。

  再说现在的宁轻雪整个人都是飘的,脸色绯红,烫的厉害,今天是她最大胆的一次,还是自己主动的,不知道那呆子会怎么想我呢!她不敢停留,直到进了宿舍大门,才放慢脚步,她感觉自己有点晕,大概是喝多了酒,脚步都有些踉踉跄跄的,跌跌撞撞的返回自己的宿舍。

  “走了,阿武,还在回味呢?”一旁的上官芸汐看着徐武的样子,微笑着提醒道。看来宁轻雪是真的想清楚了,现在都要占据主导权了。

  “哦,好的!”徐武讪讪的回道,搞不明白宁轻雪的变化,但是冥冥之中的因果线彻底拧在一起了。让徐武不得不怀疑,自己是不是传说中的姐妹杀手,一路通吃。

  只剩下上官芸汐和徐武,上官芸汐胆子就更大了,直接把徐武的手搭在她的腰上,整个人紧紧靠在他怀里,让徐武想到了宁若雪,也是这样上楼的,手不自觉的滑了下去。上官芸汐身子一僵,整个人都没力气了,靠在徐武身上随他一起往前移动。

  “芸汐,到了!”在上官芸汐还晕乎乎的时候,耳边传来徐武的声音。

  “嗯,我知道了,可我还想在靠一会儿。”上官芸汐看着徐武,眼神迷离的说道。

  “好!”徐武两只手缓缓把她拥进怀里,仿佛要阻挡住外面的风,上官芸汐也抱着他的腰,两人在夜色中热情相拥。

  “阿武,吻我!”抱了一会儿,上官芸汐昂着头说道,闭着眼,小嘴微张,脸色红润起来。

  徐武看着她任君采撷的可爱样子,向着她的嘴唇吻了上去,吻了很久很久。

  上官芸汐感觉到徐武身上出现的异状,羞红着脸推开他,小声的说道:“阿武,我走了!”说完就跑了。

  徐武看着她离开的倩影,又低头看看自己身下,深吸一口气,鄙视道:“想什么呢?太丢人了,真是一点定力都没有。”然后又想起离开的两道倩影,心里躁动起来。

  “现在定力越来越差了,混沌噬天经到底是怎么回事呢?这段时间也没啥进步了,这不应该呀!”徐武感受了下体内的灵气,自言自语的说道。自从上次筑基成功以后,后面基本没有进步了,这让徐武很是疑惑,想不明白。但他知道,或许遇见瓶颈了。

  返回宿舍,李涛和王振还没回来,估计陪人家散步聊天去了,心里暗暗鄙视了一番,简单收拾了下,徐武先自己休息了。想着自己体内的混沌噬天经可能出了问题,他就自己看了看体内,试图寻找出问题的所在。也就是他在查看自身情况,感知都放在体内,以至于李涛和王振两人回来都不知道,两人看见他这么早就睡下了,也没有声张,各自收拾了一番,也躺下了。

  第二天,三人起床后迅速收拾,今天照例是白发魔的课,还是去早一点比较好。

  只是,让他们没想到的是,白发魔今天去的格外的早,看见他们进来,就冲徐武点点头,对李涛两人挥挥手,三人都明白什么意思了,各自走向自己的位置。

  徐武走到黑板上,看着眼前的白发魔很是无奈,到底什么时候才能结束,每次上课前都是老一套,跟看猴似的。

  “呵呵呵……徐武同学,前天的比赛很精彩呢!就是不知道你的功课落下了没有?今天做完这道题,以后的数学课你就可以自己安排了,只要两周后的竞赛时间不要忘了就行。”白发魔说完,把手里的粉笔递给徐武,自己走到讲台一边,静静的看着。

  徐武一愣,好家伙,这是早有准备,把题目都写好了。

  题目:设  \(  a,  b,  c  \)  是正实数,用柯西不等式证明  \(  (a  +  b  +  c)(  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}  )  =9  \)。

  解:

  1.  应用柯西不等式:

  柯西不等式表明,对于任意的实数  \(  x_1,  x_2,  \ldots,  x_n  \)  和  \(  y_1,  y_2,  \ldots,  y_n  \),我们有

  \[  (x_12  +  x_22  +  \cdots  +  x_n2)(y_12  +  y_22  +  \cdots  +  y_n2)  \geq  (x_1y_1  +  x_2y_2  +  \cdots  +  x_ny_n)2  \]

  2.  选择合适的  \(  x_i  \)  和  \(  y_i  \):

  用\(  x_i  \)  和  \(  y_i  \)  来表示  \(  a,  b,  c  \)  和  \(  \frac{1}{a},  \frac{1}{b},  \frac{1}{c}  \)。我们可以令

  \[x_1  =  \sqrt{a},  \quad  x_2  =  \sqrt{b},  \quad  x_3  =  \sqrt{c},  \quad  y_1  =  \sqrt{a},  \quad  y_2  =  \sqrt{b},  \quad  y_3  =  \sqrt{c}  \]

  3.  应用柯西不等式:

  根据柯西不等式,我们有

  \[  (a  +  b  +  c)(\frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c})  =  (x_12  +  x_22  +  x_32)(y_12  +  y_22  +  y_32)  \geq  (x_1y_1  +  x_2y_2  +  x_3y_3)2  \]

  4.  简化右边的表达式:

  将  \(  x_i  \)  和  \(  y_i  \)  的值代入,我们得到

  \[  (x_1y_1  +  x_2y_2  +  x_3y_3)2  =  (\sqrt{a}\sqrt{a}  +  \sqrt{b}\sqrt{b}  +  \sqrt{c}\sqrt{c})2  =  (a  +  b  +  c)2  \]

  5.  得出结论:

  因此,我们有

  \[  (a  +  b  +  c)(\frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c})  \geq  (a  +  b  +  c)2  \]

  6.  使用算术平均数-几何平均数不等式(AM-GM  不等式):

  根据  AM-GM  不等式,对于任何非负实数  \(  x  \)  和  \(  y  \),有

  \[  \frac{x  +  y}{2}  \geq  \sqrt{xy}  \]

  等号成立当且仅当  \(  x  =  y  \)。

  7.  应用  AM-GM  不等式:

  将  \(  a  +  b  +  c  \)  看作是三个数的和,应用  AM-GM  不等式,我们有

  \[  \frac{(a  +  b  +  c)}{3}  \geq  \sqrt[3]{abc}\]

  8.  得出结论:

  因此,我们有

  \[  (a  +  b  +  c)(\frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c})  \geq  3\sqrt[3]{abc}  \cdot  3\sqrt[3]{\frac{1}{abc}}  =  9  \]

  综上所述,我们证明了  \(  (a  +  b  +  c)(\frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c})  \=9  \)。

  徐武放下粉笔,向白发魔点点头,直接回到下面第一排的位置上坐下了。

  “呵呵呵,徐武同学很不错,刚才我说的随时生效,你可以选择来与不来都可以。”白发魔发出特有的笑声说道,让大家都明白徐武做对了,但这种情况每次都会发生,大家都习惯了,不像之前一样喧哗出声,只是为徐武的才华感到惊艳罢了。

  “接下来我们继续上课,大家打开课本,翻到上一次讲到的内容,今天我们接着继续学习。”白发魔的话音让大家的注意力回到课本上,很有节奏的讲起了内容。

  后面的课就是平平淡淡了,除了外语课上欧阳娜娜的一场问答,其他的课程都是老样子。徐武感到很无聊,灵识又回到自己身体内部查看了起来,希望早点弄清楚自己的身体情况。

  只是事与愿违,一直到今天结束,徐武也没找到任何信息,只得作罢了。


  (https://www.shubada.com/36119/11111270.html)


1秒记住书吧达:www.shubada.com。手机版阅读网址:m.shubada.com